What is #int_1^4(.2x^3-2x+4)dx# ?

Find #int_1^4(.2x^3-2x+4)dx#

1 Answer
Mar 16, 2018

#124.5#

Explanation:

#int_1^4 (2x^3-2x+4) dx#

=#[((2x^4)/4)-((2x^2)/2)+4x]# With upper limit x=4 and lower limit x=1

Apply your limits in the integrated expression, i.e subtract your lower limit from your upper limit.

#=(128-16-16)-((1/2)-1+4)#

#=128-3(1/2)=124.5#