What is #int 1/ (x^2 -2x +1)dx#?

1 Answer
Nov 1, 2015

I found:
#int1/(x^2-2x+1)dx=-1/(x-1)+c#

Explanation:

We can write:
#int1/(x^2-2x+1)dx=int1/(x-1)^2dx=#
set:
#x-1=t#
#x=t+1#
so
#dx=dt#
substituting:
#=int1/t^2dt=intt^-2dt=-t^-1+c=-1/t+c#
where #t=x-1# so going back to #x#:
#int1/(x^2-2x+1)dx=-1/(x-1)+c#