The integral #I=int5/(1+3x)^3dx#, can be directly dealt with, if we
use the following Rule :
#intf(x)dx=F(x)+crArrintf(ax+b)dx=1/aF(ax+b)+c', (ane0).#
#f(x)=1/x^3=x^-3," we have, "F(x)=x^(-3+1)/(-3+1)=-1/(2x^2)#.
#:. int5/(1+3x)^3dx=5int1/(1+3x)^3dx#,
#=5[1/3{-1/2*1/(1+3x)^2}]#.
# rArr I=-5/6*1/(1+3x)^2+C#.
OTHERWISE,
Let #1+3x=t," so that, "3dx=dt, or, dx=1/3dt#.
#:. I=int5/(1+3x)^3dx=5int1/(1+3x)^3dx#,
#=5int1/t^3*1/3dt#,
#=5/3intt^-3dt#,
#=5/3*t^(-3+1)/(-3+1)#,
#=-5/6*t^-2,#
#=-5/(6t^2)#.
# rArr I=-5/{6(1+3x)^2}+C#, as before!
Enjoy Maths.!