What is #int (5)/(1+3x)^3dx#?

1 Answer
Mar 15, 2018

# -5/{6(1+3x)^2}+C#

Explanation:

The integral #I=int5/(1+3x)^3dx#, can be directly dealt with, if we

use the following Rule :

#intf(x)dx=F(x)+crArrintf(ax+b)dx=1/aF(ax+b)+c', (ane0).#

#f(x)=1/x^3=x^-3," we have, "F(x)=x^(-3+1)/(-3+1)=-1/(2x^2)#.

#:. int5/(1+3x)^3dx=5int1/(1+3x)^3dx#,

#=5[1/3{-1/2*1/(1+3x)^2}]#.

# rArr I=-5/6*1/(1+3x)^2+C#.

OTHERWISE,

Let #1+3x=t," so that, "3dx=dt, or, dx=1/3dt#.

#:. I=int5/(1+3x)^3dx=5int1/(1+3x)^3dx#,

#=5int1/t^3*1/3dt#,

#=5/3intt^-3dt#,

#=5/3*t^(-3+1)/(-3+1)#,

#=-5/6*t^-2,#

#=-5/(6t^2)#.

# rArr I=-5/{6(1+3x)^2}+C#, as before!

Enjoy Maths.!