What is #int cos^2(3u)du#?

2 Answers
Mar 18, 2018

The answer is #=1/2u+1/12sin(6u)+C#

Explanation:

Reminder

#cos(2x)=2cos^2(x)-1#

#cos^2(x)=1/2(1+cos(2x))#

#cos^2(3x)=1/2(1+cos(6x))#

Therefore,

#intcos^2(3u)=1/2int(1+cos(6u))du#

#=1/2(u+1/6sin(6u))#

#=1/2u+1/12sin(6u)+C#

Mar 18, 2018

We seek:

# int \ cos^2(3u) \ du = (6u + sin 6u)/12 + C #

Explanation:

We seek:

# I = int \ cos^2(3u) \ du #

We can use the trigonometric identity:

# cos 2x -= cos^2x - sin^2 x#

From which we get:

# cos 2x -= cos^2x - (1-cos^2x) <=> cos^2x -= (1+cos 2x)/2 #

So, we can write the integral as:

# I = int \ (1+cos 6u)/2 \ du #

# \ \ = 1/2 \ int \ 1+cos 6u \ du #

# \ \ = 1/2 \ {u + (sin 6u)/6} + C #

# \ \ = 1/2 \ {(6u + sin 6u)/6} + C #

# \ \ = (6u + sin 6u)/12 + C #