What is #int ln(lnx)/xdx#?
1 Answer
Nov 3, 2015
Consider the following substitution.
Let:
#intln(lnx)/(x)dx = intlntdt#
Now we can do an integration by parts.
#int udv = uv - intvdu#
Let:
#=lnt - int t*1/tdt#
#= tlnt - t#
And now let's substitute back in our original variables.
#= color(blue)((lnx)ln(lnx) - lnx + C)#