What is #int ln (x^2+14x+24)dx#?

1 Answer
Dec 5, 2015

#intln(x^2 + 14x + 24)dx#
#=x(ln(x^2 + 14x + 24)-2)+12ln(x+12)+2ln(x+2) + C#

Explanation:

For this problem, we will use the following:

  • #int(f(x) + g(x))dx = intf(x)dx + int(g(x)dx#

  • #int(ln(x)dx = x(ln(x)-1)+C#

  • #ln(ab) = ln(a) + ln(b)#


#intln(x^2 + 14x + 24)dx = intln((x + 12)(x+2))dx#

#=int(ln(x+12)+ln(x+2))dx#

#=intln(x+12)dx + intln(x+2)dx#

#=(x+12)(ln(x+12) - 1) + (x+2)(ln(x+2)-1) + C#

#=x(ln(x+12)+ln(x+2))+12ln(x+12)+2ln(x+2) - (x+12)-(x+2) + C#

#=xln((x+12)(x+2))+12ln(x+12)+2ln(x+2) -2x - 14 + C#

(We can combine the #-14# with #C# as #C# is arbitrary)

#=x(ln(x^2 + 14x + 24)-2)+12ln(x+12)+2ln(x+2) + C#