What is #int lnx/x^4 dx#?

1 Answer
Nov 3, 2015

#intfrac{ln(x)}{x^4}dx=-frac{3ln(x)+1}{9x^3}+c#,
where #c# is the constant of integration.

Explanation:

#intfrac{ln(x)}{x^4}dx=-1/3intln(x)frac{d}{dx}(x^{-3})dx#

#=-1/3[ln(x)\x^{-3}-intfrac{d}{dx}(ln(x))x^{-3}dx]#

#=-1/3ln(x)\x^{-3}+1/3int(1/x)x^{-3}dx]#

#=-frac{ln(x)}{3x^3}+1/3intx^{-4}dx#

#=-frac{ln(x)}{3x^3}+1/3frac{x^{-3}}{-3}+c#,
where #c# is the constant of integration.

#=-frac{3ln(x)+1}{9x^3}+c#