Here,
#I=intx/(1-sinx)dx#
#=intx/(1+cos(pi/2+x))dx...to[because cos(pi/2+theta)=-sintheta]#
#=intx/(2cos^2(pi/4+x/2))dx...to[because1+cosalpha=2cos^2(alpha/2)]#
#=int(x/2)/(cos^2(pi/4+x/2))dx#
Let,
#pi/4+x/2=u=>x/2=u-pi/4=>x=2u-pi/2=>dx=2du#
So,
#I=int(u-pi/4)/cos^2uxx2du#
#=int(2u-pi/2)sec^2udu#
#"Using "color(blue)"Integration by Parts :"#
#:.I=(2u-pi/2)intsec^2udu-int[(2-0)intsec^2udu]du#
#I=(2u-pi/2)*tanu-int2tanudu#
#=(2u-pi/2)tanu-2ln|secu|+c#
Subst. back , #u=pi/4+x/2# , we get
#I#=#[2(pi/4+x/2)-pi/2]tan(pi/4+x/2)-2ln|sec(pi/4+x/2)|+c#
#I=[pi/2+x-pi/2]tan(pi/4+x/2)-ln|sec(pi/4+x/2)|+c#
#I=xtan(pi/4+x/2)-ln|sec(pi/4+x/2)|+c#