What is #int (x^2-5x+4 ) / (x^3-2x +1 )#?
1 Answer
#int (x^2-5x+4)/(x^3-2x+1) dx#
#= ((5-9sqrt(5))/10)ln(abs(x+1/2-sqrt(5)/2)) + ((5+9sqrt(5))/10)ln(abs(x+1/2+sqrt(5)/2)) + C#
Explanation:
#(x^2-5x+4)/(x^3-2x+1)#
#=(color(red)(cancel(color(black)((x-1))))(x-4))/(color(red)(cancel(color(black)((x-1))))(x^2+x-1)#
#=(x-4)/(x^2+x-1)#
#=(x-4)/((x+1/2)^2-5/4)#
#=(x-4)/((x+1/2-sqrt(5)/2)(x+1/2+sqrt(5)/2))#
#=A/(x+1/2-sqrt(5)/2) + B/(x+1/2+sqrt(5)/2)#
#=(A(x+1/2+sqrt(5)/2)+B(x+1/2-sqrt(5)/2))/(x^2+x-1)#
#=((A+B)x + ((1/2+sqrt(5)/2)A+(1/2-sqrt(5)/2)B))/(x^2+x-1)#
Equating coefficients:
#{ (A+B=1), ((1/2+sqrt(5)/2)A+(1/2-sqrt(5)/2)B = -4) :}#
Subtract
#sqrt(5)/2(A-B) = -9/2#
Multiply both sides by
#A-B = -9/sqrt(5) = -(9sqrt(5))/5#
Add this to the first equation to find:
#2A = 1-(9sqrt(5))/5 = (5-9sqrt(5))/5#
Hence:
#A = (5-9sqrt(5))/10#
#B = (5+9sqrt(5))/10#
So:
#int (x^2-5x+4)/(x^3-2x+1) dx#
#= int ((5-9sqrt(5))/(10(x+1/2-sqrt(5)/2)) + (5+9sqrt(5))/(10(x+1/2+sqrt(5)/2))) dx#
#= ((5-9sqrt(5))/10)ln(abs(x+1/2-sqrt(5)/2)) + ((5+9sqrt(5))/10)ln(abs(x+1/2+sqrt(5)/2)) + C#