What is #int ((x^2) / (sqrt(1 - x))) dx#?

2 Answers
Mar 18, 2018

#I=-2(1-x)^(1/2)+(4(1-x)^(3/2))/3-(2(1-x)^(5/2))/5+c#

Explanation:

#I=intx^2/sqrt(1-x)dx#
Take, #sqrt(1-x)=t=>1-x=t^2=>x=1-t^2=>dx=-2tdt#
#I=int(1-t^2)^2/cancel(t)(-2*cancel(t)*dt)=-2int(1-2t^2+t^4)dt#
#=>I=-2[t-(2t^3)/3+t^5/5]+c#
#=>I=-2t+(4t^3)/3-(2t^5)/5+c#
#=>I=-2(1-x)^(1/2)+(4(1-x)^(3/2))/3-(2(1-x)^(5/2))/5+c#

Mar 18, 2018

The answer is #=-2(1-x)^(1/2)+4/3(1-x)^(3/2)-2/5(1-x)^(5/2)+C#

Explanation:

Perform the substitution

#u=(1-x)#, #=>#, #du=-dx#

#x^2=(1-u)^2#

Therefore,

#I=int(x^2dx)/(sqrt(1-x))=-int((1-u)^2du)/(sqrt(u))#

#=-int((1-2u+u^2)du)/u^(1/2)#

#=-intu^(-1/2)du+2intu^(1/2)du-intu^(3/2)du#

#=-2u^(1/2)+4/3u^(3/2)-2/5u^(5/2)#

#=-2(1-x)^(1/2)+4/3(1-x)^(3/2)-2/5(1-x)^(5/2)+C#