What is #intcos^2(x)sin(x)dx#?

2 Answers
Nov 6, 2016

#intcos^2xsinxdx=-1/3cos^3x+c#

Explanation:

now#d/(dx)(cos^nx) #by the chain rule

#y=cos^nx#
#u=cosx=>(du)/(dx)=-sinx#

#d/(dx)(u^n)=n(u^(n-1))#

so

#dy/dx=(dy)/(du)xx(du)/(dx)#

#(dy)/(dx)=n(u^(n-1))xx(-sinx)=-ncos^(n-1)sinx#

so the integral

#intcos^2xsinxdx#

looks like a #y=cos^3x# function

#d/(dx)(cos^3x)=3cos^2x(-sinx)=-3cos^2xsinx#

reversing the process

#intcos^2xsinxdx=-1/3cos^3x+c#

#intcos^2(x)sin(x)dx=-cos^3x+c#

Explanation:

Let #u=cosx#, then #du--sinxdx#

Hence #intcos^2(x)sin(x)dx=-intu^2du#

#= -u^3/3+c#

#= -1/3cos^3x+c#