What is #lim x->64# of #(sqrtx -8)/(x-64)#?

1 Answer
Dec 23, 2016

The answer is #=1/16#

Explanation:

#lim_(x->64)(sqrtx-8)/(x-64)=(8-8)/(64-64)=0/0#

This is undefined

So,

we apply L'Hôpital's rule

#lim_(x->64)(sqrtx-8)/(x-64)=lim_(x->64)((sqrtx-8)')/((x-64)')#

#=lim_(x->64)(1/(2sqrtx))/(1)=1/(2sqrt64)=1/16#