What is #(r^-4s^5)/(r^-8s^-9)#?
1 Answer
Mar 6, 2016
Explanation:
#(r^-4s^5)/(r^-8s^-9)#
#=(r^(-4-(-8))s^5)/s^-9#
#=(r^4s^5)/s^-9#
#=r^4s^(5-(-9))#
#color(green)(=r^4s^14)#
#(r^-4s^5)/(r^-8s^-9)#
#=(r^(-4-(-8))s^5)/s^-9#
#=(r^4s^5)/s^-9#
#=r^4s^(5-(-9))#
#color(green)(=r^4s^14)#