What is #(r^-4s^5)/(r^-8s^-9)#?

1 Answer
Mar 6, 2016

#r^4s^14#

Explanation:

#1#. Recall the exponent quotient rule: #a^m-:a^n=a^(m-n)#. Thus, start by doing: #r^-4-:r^-8#.

#(r^-4s^5)/(r^-8s^-9)#

#=(r^(-4-(-8))s^5)/s^-9#

#2#. Simplify.

#=(r^4s^5)/s^-9#

#3#. Use the exponent quotient rule for #s^5-:s^-9#.

#=r^4s^(5-(-9))#

#4#. Simplify.

#color(green)(=r^4s^14)#