What is the amplitude of #y=cos2x# and how does the graph relate to #y=cosx#?

1 Answer
Oct 5, 2017

For #y=cos(2x)#, #Amplitude=1# & #Period=pi#
For #y=cosx,Amplitude =1# & #Period=2pi#
Amplitude remains the same but perio halved for #y=cos(2x)#
#y=cos(2x)#
graph{cos(2x) [-10, 10, -5, 5]}
#y=cos(x)#
graph{cosx [-10, 10, -5, 5]}

Explanation:

#y=a*cosx(bc-c)+d#
In given equation #y=cos(2x)#
#a=1,b=2,c=0# & #d=0#
#:.Amplitude=1#
#Period=(2pi)/b=(2pi)/2=pi#

Similarly for Equation #y=cosx#,
#Amplitude=1# & #Period=(2pi)/b=(2pi)/1=2pi#

Period halved to #pi# for #y=cos(2x)# as can be seen from the graph.