What is the angle between #<-2,4,-3> # and #<-1,0,1>#?

1 Answer
Jan 22, 2017

The angle is #=97.5#º

Explanation:

The angle between #vecA# and #vecB# is given by the dot product definition.

#vecA.vecB=∥vecA∥*∥vecB∥costheta#

Where #theta# is the angle between #vecA# and #vecB#

The dot product is

#vecA.vecC=〈-2,4,-3〉.〈-1,0,1〉=2+0-3=-1#

The modulus of #vecA#= #∥〈-2,4,-3〉∥=sqrt(4+16+9)=sqrt29#

The modulus of #vecC#= #∥〈-1,0,1〉∥=sqrt(1+0+1)=sqrt2#

So,

#costheta=(vecA.vecB)/(∥vecA∥*∥vecB∥)=-1/(sqrt29*sqrt2)=-0.1313#

#theta=97.5#º