What is the axis of symmetry and vertex for the graph #y = –x^2 +12x – 4 #?

1 Answer
Jul 25, 2016

Vertex#->(x,y)=(6,32)#

Axis of symmetry is: #x=6#

Explanation:

Given:#" "y=-x^2+12x-4#
You can solve the traditional way or use a 'trick'

Just to give you an idea how useful the trick is:

By sight: #color(brown)("The axis of symmetry is "x=+6)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine axis of symmetry and "x_("vertex"))#

Consider the standard form of #y=ax^2+bx+c#

Write as: #y=a(x^2+b/a x)+c#

In your case #a=-1#

So #color(brown)(x_("vertex")=(-1/2)xx12/(-1) =+6)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)("Determine "y_("vertex"))#

Substitute #x=6# into original equation.

#y_("vertex")=-(6^2)+12(6)-4" "->" "y_("vertex")=32#

#color(white)(.)#

#color(magenta)("'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")#
#color(magenta)("'~~~~~~~~~~~~Another method ~~~~~~~~~~~~~")#
#color(magenta)("'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")#

#color(blue)("Completing the square "color(brown)(larr" not much detail given")#

#y=-(x^2-12x)-4+k#

#y=-(x-6)^2-4+k#

#But -36+k=0->k=36#

#y=-(x-6)^2 +32#

#x_("vertex")->(-1)xx(-6)=+6#
#y_("vertex")->32#

Tony B