What is the cross product of #[1, -3, 2]# and #[-8, 5, 1] #?

1 Answer

Cross product is a vector
#-13i-17j-19k#

Explanation:

Let vector #a=1*i-3*j+2*k# and #b=-8*i+5*j+1*k#

The formula for cross product

#a#x#b=[(i,j,k),(a_1,a_2,a_3),(b_1,b_2,b_3)]#

#a#x#b=+a_2b_3i+a_3b_1j+a_1b_2k-a_2b_1k-a_3b_2i-a_1b_3j#

Let us solve the cross product

#a#x#b=[(i,j,k),(1,-3,2),(-8,5,1)]#

#a#x#b=#

#+(-3)(1)i+(2)*(-8)j+(1)(5)k-(-3)(-8)k-(2)(5)i-(1)(1)j#

#a#x#b=-3i-10i-16j-j+5k-24k#

#a#x#b=-13i-17j-19k#

God bless...I hope the explanation is useful.