What is the cross product of #[4,-3,2]# and #[1,-2,3] #?

1 Answer
Jun 13, 2016

Answer:

It is #(-5, -10, -5)#.

Explanation:

Given two vectors #v_1=(x_1, y_1, z_1)# and #v_2=(x_2, y_2, z_2)# the cross product

#v_1\times v_2# is given by

#v_1\times v_2=(y_1z_2-z_1y_2, z_1x_2-x_1z_2, x_1y_2-x_2y_1)#.

For your two vectors it is

#(4, -3, 2)\times(1, -2, 3)#
#=(-3*3-2*(-2), 2*1-4*3, 4*(-2)-(-3)*1)#
#=(-9+4, 2-12, -8+3)#
#=(-5, -10, -5)#.