If we let #y=(ln(sin(2x)))^2#, then we can find the derivative of #y# using the chain rule. But first, we will have to define the composition of the functions we need to differentiate.
Let #y=u^2#
and #u=lnv#
and #v=sinw#
and #w=2x#
Then,
#dy/dx=dy/(du)xx(du)/(dv)xx(dv)/(dw)xx(dw)/dx#
#dy/(du)=2u=2lnv=2ln(sinw)=2ln(sin(2x))#
#(dv)/(du)=1/v=1/sinw=1/sin(2x)#
#(dv)/(dw)=cosw=cos(2x)#
#(dw)/dx=2#
#dy/dx=2ln(sin(2x))xx1/sin(2x)xxcos(2x)xx2#
#=4cot(2x)ln(sin(2x))#