What is the derivative of #(ln x)^(1/5)#?
1 Answer
Aug 24, 2016
Explanation:
differentiate using the
#color(blue)"chain rule"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))........ (A)#
#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(lnx)=1/x)color(white)(a/a)|)))# let
#y=(lnx)^(1/5)# now let
#u=lnxrArr(du)/(dx)=1/x# and y
#=u^(1/5)rArr(dy)/(du)=1/5u^(-4/5)# substitute these values into (A) convert u back to x.
#rArrdy/dx=1/5u^(-4/5)xx1/x=1/(5x(lnx)^(4/5)#