What is the derivative of #sin(x^2+5) cos(x^2+9x+2)#?
1 Answer
Explanation:
You can differentiate this function by using the product rule
#color(blue)(d/dx(f(x) * g(x)) = [d/dx(f(x))] * g(x) + f(x) * d/dx(g(x))#
the fact that
#d/dx(sinx) = cosx" "# and#" "d/dx(cosx) = -sinx#
and the chain rule for
So, put all this together to get
#y = sinu * sin t#
#d/dx(y) = [d/dx(sinu)] * cost + sinu * d/dx(cost)#
#y^' = [d/(du)(sinu) * d/dx(u)] * cost + sinu * [d/(dt)(cost) * d/dx(t)]#
#y^' = [cosu * d/dx(x^2 + 5)] * cost + sinu * [(-sint) * d/dx(x^2+9x+2)]#
#y^' = [cos(x^2+5) * 2x] * cos(x^2 + 9x + 2) + sin(x^2 + 5) * [-sin(x^2 + 9x + 2) * (2x + 9)]#
#y^' = color(green)(2x * cos(x^2 + 5) * cos(x^2 + 9x + 2) - (2x+9) * sin(x^2+5) * sin(x^2 + 9x + 2))#