What is the derivative of #y=6(sec(x)-tan(x))^(3/2)#?

1 Answer
Mar 15, 2018

#dy/dx = 9(sec(x)-tan(x))^(1/2) (tan(x)sec(x)-sec^2(x))#

Explanation:

Given: #y=6(sec(x)-tan(x))^(3/2)#

Use the chain rule to compute the derivative:

#(d(y(u(x))))/dx = (d(y(u)))/(du) (du)/dx#

Let #u = sec(x)-tan(x)#, then:

#y = 6u^(3/2)#

#(d(y(u)))/(du) = 9u^(1/2)#

and

#(du)/dx = tan(x)sec(x)-sec^2(x)#

Substituting into the chain rule:

#dy/dx = 9u^(1/2) (tan(x)sec(x)-sec^2(x))#

Reversing the substitution for u:

#dy/dx = 9(sec(x)-tan(x))^(1/2) (tan(x)sec(x)-sec^2(x))#