For the domain, what's under the square root sign is #>=0#
Therefore,
#4x-x^2>=0#
#x(4-x)>=0#
Let #g(x)=sqrt(x(4-x))#
We can build a sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaaaa)##0##color(white)(aaaaaa)##4##color(white)(aaaaaaa)##+oo#
#color(white)(aaaa)##x##color(white)(aaaaaaaa)##-##color(white)(aaaa)##0##color(white)(aa)##+##color(white)(aaaaaaa)##+#
#color(white)(aaaa)##4-x##color(white)(aaaaa)##+##color(white)(aaaa)##color(white)(aaa)##+##color(white)(aa)##0##color(white)(aaaa)##-#
#color(white)(aaaa)##g(x)##color(white)(aaaaaa)##-##color(white)(a)##color(white)(aaa)##0##color(white)(aa)##+##color(white)(aa)##0##color(white)(aaaa)##-#
Therefore
#g(x)>=0# when #x in [0,4]#
Let,
#y=sqrt(4x-x^2)#
hen,
#y^2=4x-x^2#
#x^2-4x+y^2=0#
The solutions this quadratic equation is when the discriminant #Delta>=0#
So,
#Delta=(-4)^2-4*1*y^2#
#16-4y^2>=0#
#4(4-y^2)>=0#
#4(2+y)(2-y)>=0#
Let #h(y)=(2+y)(2-y)#
We build the sign chart
#color(white)(aaaa)##y##color(white)(aaaa)##-oo##color(white)(aaaaa)##-2##color(white)(aaaa)####color(white)(aaaaaa)##2##color(white)(aaaaaa)##+oo#
#color(white)(aaaa)##2+y##color(white)(aaaa)##-##color(white)(aaaa)##0##color(white)(aaaa)##+##color(white)(aaaa)##0##color(white)(aaaa)##+#
#color(white)(aaaa)##2-y##color(white)(aaaa)##+##color(white)(aaaa)##0##color(white)(aaaa)##+##color(white)(aaaa)##0##color(white)(aaaa)##-#
#color(white)(aaaa)##h(y)##color(white)(aaaaa)##-##color(white)(aaaa)##0##color(white)(aaaa)##+##color(white)(aaaa)##0##color(white)(aaaa)##-#
Therefore,
#h(y)>=0#, when #y in [-2,2]#
This is not possible for the whole interval, so the range is #y in [0,2]#
graph{sqrt(4x-x^2) [-10, 10, -5, 5]}