What is the domain and range of #f(x)=sqrtx /( x-10)#?

1 Answer
Jun 9, 2017

Answer:

Domain: #[0,10)uu(10,oo)# , Range: #[-oo,oo]#

Explanation:

#f(x)=sqrt x/(x-10)# . Domain: under root should be #>=0:. x>=0# and denominator should not be zero, i.e #x-10!=0 :. x != 10 #
So domain is #[0,10)uu(10,oo)#

Range: #f(x)# is any real value, i.e #f(x) in RR# or #[-oo,oo]#
graph{x^0.5/(x-10) [-20, 20, -10, 10]}