What is the domain and range of #y=x^2+4#?

1 Answer
Sep 1, 2017

Answer:

Domain: # x in RR or (-oo,oo)#.
Range: # y >=4 or [4,oo)#

Explanation:

# y = x^2 +4 # . Domain : Any real value of #x# i.e

# x in RR or (-oo,oo)#

Range: This is a parabola equation of which vertex form is

# y= a(x-h)^2+k or y= 1(x-0)^2+4; (h.k)# being vertex.

Here vertex is at #(0,4) ; a >0 # . Since #a>0# , the parabola opens

upward . The vertex #(0,4)# is the lowest point of the parabola.

So Range is # y >=4 or [4,oo)#

graph{x^2+4 [-20, 20, -10, 10]} [Ans]