What is the domain for the function #f(x)=1/(sqrtx-2)#?

1 Answer
Jul 25, 2017

Domain: #[0,4)uu(4,+oo)#
Range:: #(-oo, -0.5]uu(0, +oo)#

Explanation:

#f(x) = 1/(sqrtx-2)#

Considerations for the domain of #f(x)#

#sqrtx# is defined #in RR forall x>=0 -> # Domain of #f(x)>=0#

#f(x)# is undefined at #sqrtx=2 -> x!=4#

Combining these results:
the domain of #f(x) = [0,4)uu(4,+oo)#

Considerations for the range of #f(x)#

#f(0) = -0.5#
Since #x>=0 -> -0.5# is a local maximum of #f(x)#

#lim_(x->4^-) f(x) = -oo#

#lim_(x->4^+) f(x) = +oo#

#lim_(x->+oo) f(x) =0#

Combining these results:
the range of #f(x)=(-oo, -0.5]uu(0, +oo)#

These results can be observed by the graph of #f(x)# below.

graph{1/(sqrtx-2) [-14.24, 14.24, -7.12, 7.12]}