What is the domain of #sqrt((x^2-x-6)/(x-4)#?

1 Answer
Aug 25, 2017

The domain is #x in [-2,3] uu (4,+oo)#

Explanation:

The conditions are

#((x^2-x-6)/(x-4))>=0# and #x!=4#

Let #f(x)=((x^2-x-6)/(x-4))=((x+2)(x-3))/(x-4)#

We can build the sign chart

#color(white)(aaaa)##x##color(white)(aaaaa)##-oo##color(white)(aaaa)##-2##color(white)(aaaaaaaa)##3##color(white)(aaaaaaa)##4##color(white)(aaaaa)##+oo#

#color(white)(aaaa)##x+2##color(white)(aaaaaa)##-##color(white)(aa)##0##color(white)(aaaa)##+##color(white)(aaaaa)##+##color(white)(aaaaa)##+#

#color(white)(aaaa)##x-3##color(white)(aaaaaa)##-##color(white)(aaaaaaa)##-##color(white)(aa)##0##color(white)(aa)##+##color(white)(aaaaa)##+#

#color(white)(aaaa)##x-4##color(white)(aaaaaa)##-##color(white)(aaaaaaa)##-##color(white)(aaaaa)##-##color(white)(aa)##||##color(white)(aa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaaa)##-##color(white)(aa)##0##color(white)(aaaa)##+##color(white)(aa)##0##color(white)(aa)##-##color(white)(aa)##||##color(white)(aa)##+#

Therefore,

#f(x)>=0# when #x in [-2,3] uu (4,+oo)#

graph{sqrt((x^2-x-6)/(x-4)) [-12.66, 19.38, -6.05, 9.99]}