What is the free-fall acceleration at the surface of (a) the moon and (b) Jupiter?

Then teach the underlying concepts
Don't copy without citing sources
preview
?

Explanation

Explain in detail...

Explanation:

I want someone to double check my answer

1
Apr 11, 2017

g_("moon")=1.62" " m/s^2
g_("Jupiter")=24.79" "m/s^2

Explanation:

$\text{let us assume that there is an object with a mass of 'm' on the}$ $\text{moon. The moon will attract this object.}$

$\cancel{m} \cdot {g}_{\text{moon")=G*(cancel(m)*M_("moon"))/r_("moon}}^{2}$

${g}_{\text{moon")=G*M_("moon")/r_("moon}}^{2}$

$\text{where "M_("moon")" mass of moon ,"r_("moon") " radius of moon}$

${g}_{\text{moon}} = 6.67 \cdot {10}^{- 11} \cdot \frac{7.35 \cdot {10}^{22}}{1738000} ^ 2$

g_("moon")=1.62" " m/s^2

$\text{for Jupiter: }$

${g}_{\text{Jupiter")=G*M_("Jupiter")/r_("Jupiter}}^{2}$

${g}_{\text{Jupiter}} = 6.67 \cdot {10}^{- 11} \cdot \frac{1.9 \cdot {10}^{27}}{71492000} ^ 2$

g_("Jupiter")=24.79" "m/s^2

• 16 minutes ago
• 18 minutes ago
• 19 minutes ago
• 24 minutes ago
• 5 minutes ago
• 5 minutes ago
• 8 minutes ago
• 10 minutes ago
• 11 minutes ago
• 15 minutes ago
• 16 minutes ago
• 18 minutes ago
• 19 minutes ago
• 24 minutes ago