What is the integral of sqrt(9-x^2)/x?

2 Answers
Mar 30, 2018

#intsqrt(9-x^2)/xdx=ln|(3-sqrt(9-x^2))/3|+sqrt(9-x^2)+C#

Explanation:

We want #intsqrt(9-x^2)/xdx#.

In general, when encountering an integral involving #sqrt(a^2-x^2),# make the trigonometric substitution #x=asintheta.#

In this case, #a^2=9, a=3,# and so our substitution is #x=3sintheta#.

Solving for #dx# yields

#dx=3costhetad theta#.

Apply the substitution:

#int(cancel3costhetasqrt(9-9sin^2theta))/(cancel3sintheta)d theta#

Simplify:

#int(costhetasqrt(9(1-sin^2theta)))/sinthetad theta#

Recall the identity

#sin^2theta+cos^2theta=1#

This identity also tells us that

#1-sin^2theta=cos^2theta#

Rewrite with the identity applied:

#3int(costhetasqrt(cos^2theta))/sinthetad theta=3int(cos^2theta/sintheta)d theta#

Now, to solve the resultant integral, we're best off rewriting again with the identity reversed:

#3int(1-sin^2theta)/sinthetad theta=3(intcscthetad theta-intsinthetad theta)#

#intcscthetad theta=ln|csctheta-cottheta|#. Memorize this, it's a fairly common integral.

#intsinthetad theta=-costheta#

#3ln|csctheta-cottheta|+3costheta+C# (Don't forget the constant of integration).

We now need to rewrite in terms of #x.# We said #x=3sintheta,# so #sintheta=x/3, csctheta=1/(x/3)=3/x.#

To solve for cosine, recall #sin^2theta+cos^2theta=1, x^2/9+cos^2theta=9/9, cos^2theta=(9-x^2)/9, costheta=sqrt(9-x^2)/3.#

Finally, we end up with

#intsqrt(9-x^2)/xdx=ln|(3-sqrt(9-x^2))/3|+sqrt(9-x^2)+C#

Mar 30, 2018

#I = sqrt(9 - x^2)/3 - ln|(3 + sqrt(9 - x^2))/x| + C#

Explanation:

I would solve this using a trig substitution. Let #x = 3sintheta#. Then #dx = 3costheta d theta#.

#I = int sqrt(9 - 9sin^2theta)/(3sintheta) * 3costheta d theta#

#I = int sqrt(9cos^2theta)/sintheta * costheta d theta#

#I = int 3cos^2theta/sintheta d theta#

#I = 3int (1 - sin^2theta)/sintheta d theta#

#I = 3int csctheta - sinthetad theta#

These are two known integrals.

#I = costheta - ln|csctheta + cottheta| + C#

Recall from the initial substitution that #x/3 =sintheta#, therefore #sqrt(9 - x^2)/3 = costheta#, #3/x = csctheta# and #sqrt(9 - x^2)/x = cottehta#.

#I = sqrt(9 - x^2)/3 - ln|3/x + sqrt(9 - x^2)/x| + C#

#I = sqrt(9 - x^2)/3 - ln|(3 + sqrt(9 - x^2))/x| + C#

Hopefully this helps!