What is the interval of convergence of #sum_1^oo ((-1)^(-n)*x^(-n))/sqrtn #?
1 Answer
Explanation:
#sum_(n=1)^oo((-1)^-nx^-n)/sqrtn#
The series
#L=lim_(nrarroo)abs(a_(n+1)/a_n)=lim_(nrarroo)abs(((-1)^(-n-1)x^(-n-1))/sqrt(n+1)*sqrtn/((-1)^-nx^-n))#
Simplifying:
#L=lim_(nrarroo)abs((-1)^-1x^-1sqrt(n/(n+1)))#
The
#L=abs(1/x)lim_(nrarroo)abssqrt(n/(n+1))#
The limit approaches
#L=abs(1/x)#
So the series converges when
#abs(1/x)<1#
This can be split up into
#-1<1/x<1#
Splitting into two inequalities, we see that
#0<1/x+1=(1+x)/x>0#
Which is true on
The other inequality
#1/x-1>0=>(1-x)/x>0#
Which is true on
The intersection of the two solutions we found is
Before we call this our interval of convergence, plug the endpoints
At
#sum_(n=1)^oo((-1)^-n0^-n)/sqrtn=sum_(n=1)^oo0#
This converges because it's always
At
#sum_(n=1)^oo((-1)^-n1^-n)/sqrtn#
#sum_(n=1)^oo(-1)^n/sqrtn#
Which converges through the alternating series test. Since both
#0lt=xlt=1#