What is the interval of convergence of #sum_1^oo (x^n *n^n)/(n!)#?

1 Answer
Nov 5, 2015

#(-1/e, 1/e)# or possibly #[-1/e, 1/e]#

Explanation:

Let #a_n = n^n/(n!)#

Then:

#a_(n+1) = (n+1)^(n+1)/((n+1)!) = (n+1)^n/(n!)=((n+1)/n)^n n^n/(n!)#

#=(1+1/n)^n a_n#

Now #(1+1/n)^n -> e# as #n->oo#

So: #(x^(n+1)*(n+1)^(n+1))/((n+1)!) -: (x^n*n^n) / (n!) = (a_(n+1)/a_n)x -> ex# as #n->oo#

Hence if #abs(x) < 1/e# then #sum_(n=0)^oo (x^n*n^n) / (n!)# is absolutely convergent.

If #abs(x) > 1/e# then #EE N in ZZ# such that:

#abs((x^(n+1)*(n+1)^(n+1))/((n+1)!) -: (x^n*n^n) / (n!)) > 1# for all #n >= N#

so the sum diverges.

I am not sure about the case #abs(x) = 1/e#, since #(1+1/n)^n < e# for all #n in NN#.