What is the limit as #x -> 0# of #((1/(x-1) + 1 )/ x)#?

1 Answer
Jan 7, 2016

graph{((1/(x-1))+1)/x [-2.737, 2.737, -1.367, 1.37]}

#lim_(xrarr0)((1/(x-1)+1)/x)=-1#

Explanation:

#lim_(xrarr0)((1/(x-1)+1)/x)=lim_(xrarr0)((cancel(1)+xcancel(-1))/(x-1))/x=#

#lim_(xrarr0)((x)/(x-1))/x=lim_(xrarr0)1/cancel(x)*cancel(x)/(x-1)=#
#=lim_(xrarr0)1/(x-1)#

#1/(x-1)# is continuos in #x=0#

then:

#=lim_(xrarr0)1/(x-1)=1/(0-1)=1/-1=-1#