What is the limit of #(1+4/x)^x# as x approaches infinity?

2 Answers
Apr 27, 2016

#y=e^4#

Explanation:

#lim_(x->oo) (1+4/x)^x = (1+4/oo)^oo = 1^ oo#

This is an indeterminate type so we use l'Hopital's Rule. That is, find the limit of the derivative of the top divided by the derivative of the bottom.

Let #y=(1+4/x)^x#

#lny=ln (1+4/x)^x#-> Take # ln# of both sides

#lny=xln (1+4/x)#

#lny=ln (1+4/x)/x^-1#

#lim_(x->oo) lny = lim_(x->oo) ln (1+4/x)/x^-1#

#lim_(x->oo) lny =lim_(x->oo) (1/(1+4/x) *-4/x^2)/(-1/x^2)#

#lim_(x->oo) lny=lim_(x->oo) 1/(1+4/x) *-4/x^2 xx -x^2#

#lim_(x->oo) lny=lim_(x->oo) 4/(1+4/x)#

# lny= 4/(1+4/oo)# Note that the limit of ln y is just ln y since it is a constant

#lny=4/(1+0)=4/1=4#

#e^lny=e^4#

#y=e^4#

Apr 27, 2016

#e^4#

Explanation:

Use #lim_(urarroo)(1+1/u)^u = e#

#(1+4/x)^x = ((1+1/(x/4))^(x/4))^4#

As #xrarroo#, the ration #x/4rarroo# so the inside expression goes to #e#.

#lim_(urarroo) ((1+1/(x/4))^(x/4))^4= (lim_(urarroo) (1+1/(x/4))^(x/4))^4 #

# = (e)^4 = e^4#