What is the limit of lnx-ln(pi)/x-(pi) when x approaches to (pi) from left?

1 Answer
Nov 20, 2016

#lim_(xrarrpi^-)(ln(x)-ln(pi))/(x-pi)=1/pi#

Explanation:

#lim_(xrarrpi^-)(ln(x)-ln(pi))/(x-pi)#

Note that this fits the form for the limit definition of the derivative at a point:

#f'(a)=lim_(xrarra)(f(x)-f(a))/(x-a)#

So, for #lim_(xrarrpi^-)(ln(x)-ln(pi))/(x-pi)#, we see that #f(x)=ln(x)# and #a=pi#, so this limit is equivalent to #f'(pi)# when #f(x)=ln(x)#.

If #f(x)=ln(x)#, then #f'(x)=1/x# and #f'(pi)=1/pi#. So

#f'(pi)=lim_(xrarrpi)(f(x)-f(pi))/(x-pi)=lim_(xrarrpi^-)(ln(x)-ln(pi))/(x-pi)=1/pi#

The sidedness of this limit has no effect on the answer.