What is the local maxima or minima of #x^3 - 3x^2 + 1#?

1 Answer
Jan 24, 2016

maximum at (0 , 1 )
minimum at (2 , -3 )

Explanation:

To find the x-coordinates of maxima / minima differentiate the

function and equate to zero ( the gradients of tangents at

stationary points = 0 ).

let y = # x^3 - 3x^2 + 1 #

now # dy/dx = 3x^2 - 6x = 0 #

hence 3x (x - 2 ) = 0 and x = 0 or x = 2

To find y-coordinates substitute these values into y .

x = 0 : y = 1 hence (0 , 1 ) is a stationary point.( S.P )

x = 2 : y = # (2)^3 - 3(2)^2 + 1 = - 3 #

hence ( 2 , - 3 ) is an S.P

To find the 'Nature' of these points use the second derivative.

If #(d^2y)/dx^2# < 0 then maximum S.P

If #(d^2y)/dx^2#> 0 then minimum S.P

now # (d^2y)/dx^2 = 6x - 6 #

# x = 0 :( d^2 y)/dx^2 = - 6 < 0 rArr (0 ,1 ) color(black)(" is a max") #

# x = 2 : (d^2y)/dx^2 = 12 - 6 = 6 > 0 rArr (2 , -3 ) color(black)( "is a min")#

graph{x^3-3x^2+1 [-10, 10, -5, 5]}