# What is the norm of #<1,-3,-2 >#?

##### 1 Answer

Apr 1, 2016

Let **norm** is written as

#\mathbf(|| vecv || = sqrt(vecvcdotvecv))#

#= sqrt(<< 1,-3,-2 >>cdot<< 1,-3,-2 >>)#

#= sqrt(1cdot1 + (-3)cdot(-3) + (-2)cdot(-2))#

#= sqrt(1^2 + (-3)^2 + (-2)^2)#

#= sqrt(1 + 9 + 4)#

#= color(blue)(sqrt(13))#

This tells us that the vector has a length of

Given that information, can you find the norm of