What is the product of #3a^2b# and #-2ab^3#?

1 Answer
Jun 15, 2018

See a solution process below:

Explanation:

First, we can rewrite:

#3a^2b xx -2ab^3#

as

#(3 xx -2)(a^2 xx a)(b xx b^3) =>#

#-6(a^2 xx a)(b xx b^3)#

Next, use this rule for exponents to rewrite the expression:

#a = a^color(red)(1)#

#-6(a^2 xx a^1)(b^1 xx b^3)#

Now, use this rule of exponents to complete the multiplication:

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#-6(a^color(red)(2) xx a^color(blue)(1))(b^color(red)(1) xx b^color(blue)(3)) =>#

#-6a^(color(red)(2)+color(blue)(1))b^(color(red)(1)+color(blue)(3)) =>#

#-6a^3b^4#