What is the product of #d-9# and #2d^2+11d-4#?

2 Answers
Mar 22, 2018

#2d^3-7d^2-103d+36#

Explanation:

#(color(magenta)dcolor(lime)(-9))xxcolor(blue)(""(2d^2+11d-4))#

using the distributive property:
#color(white)("XXX")=color(magenta)dcolor(blue)(""(2d^2+11d-4))color(lime)(-9)color(blue)(""(2d^2+11d-4))#

expanding the individual terms (by multiplying):
#color(white)("XXX")=color(magenta)(2d^3+11d^2-4d)color(lime)(-18d^2-99d+36)#

combining like terms:
#color(white)("XXX")=2d^3-7d^2-103d+36#

Mar 22, 2018

#=2d^3-7d^2-103d+36#

Explanation:

#d*(2d^2+11d-4)-9*(2d^2+11d-4)#
#=2d^2*d+11d*d-4*d-2d^2*9-11d*9+4*9#
#=2d^3+11d^2-4d-18d^2-99d+36#
#=2d^3-7d^2-103d+36#