What is the radius of convergence of #sum_1^oox/n^2#?
1 Answer
Nov 21, 2015
Infinite
Explanation:
The
#sum_(n=1)^oo x/n^2 = x sum_(n=1)^oo 1/n^2 = x*pi^2/6#
Proving that
#sum_(n=1)^N 1/n^2 < 1+sum_(n=1)^N 1/(n(n+1))#
#= 1+sum_(n=1)^N (1/n-1/(n+1))#
#= 1+sum_(n=1)^N 1/n - sum_(n=1)^N 1/(n+1)#
#= 1+sum_(n=1)^N 1/n - sum_(n=2)^(N+1) 1/n#
#= 2 + color(red)(cancel(color(black)(sum_(n=2)^N 1/n))) - color(red)(cancel(color(black)(sum_(n=2)^N 1/n))) - 1/(N+1)#
#= 2-1/(N+1) -> 2# as#N->oo#