What is the simplified form of #(20x^5)/(15y^6)*(5y^4)/(6x^2)#?

1 Answer
Feb 19, 2017

#(10x^3)/(9y^2)#

Explanation:

First, we can rewrite this expression as:

#((20 * 5)(x^5y^4))/((15 * 6)(x^2y^6)) = ((100)(x^5y^4))/((90)(x^2y^6)) = (10(x^5y^4))/(9(x^2y^6))#

Now, we can use these two rules for exponents to simplify the #x# and #y# terms:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))# and #x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#

#(10(x^color(red)(5)y^color(red)(4)))/(9(x^color(blue)(2)y^color(blue)(6))) = (10x^(color(red)(5)-color(blue)(2)))/(9y^(color(blue)(6)-color(red)(4))) = (10x^3)/(9y^2)#