# What is the slope of the line that goes through (-4, 6) and (4, -3)?

$- \frac{9}{8}$

#### Explanation:

The slope $m$ of the straight line passing through the points $\left({x}_{1} , {y}_{1}\right) \setminus \equiv \left(- 4 , 6\right)$ & $\left({x}_{2} , {y}_{2}\right) \setminus \equiv \left(4 , - 3\right)$

$m = \setminus \frac{{y}_{2} - {y}_{1}}{{x}_{2} - {x}_{1}}$

$= \setminus \frac{- 3 - 6}{4 - \left(- 4\right)}$

$= \setminus \frac{- 9}{8}$

$= - \frac{9}{8}$

Jul 21, 2018

The slope is $- \frac{9}{8}$

#### Explanation:

To find the slope, we use the formula $m = \frac{{y}_{2} - {y}_{1}}{{x}_{2} - {x}_{1}}$.

$m = \frac{\left(- 3\right) - \left(6\right)}{\left(4\right) - \left(- 4\right)}$

$m = - \frac{9}{8}$

Jul 21, 2018

$- \frac{9}{8}$

#### Explanation:

We can use the formula

$\frac{\Delta y}{\Delta x}$, where the Greek letter Delta ($\Delta$) is shorthand for "change in".

We just see how much our $y$ changes by, and divide it by how much our $x$ changes by.

We go from $y = 6$ to $y = - 3$, which represents a $\Delta y$ of $- 9$.

We go from $x = - 4$ to $x = 4$, which represents a $\Delta x$ of $8$.

Putting it together, we get

$- \frac{9}{8}$

Hope this helps!