What is the square root of 98 minus, square root of 24 plus the square root of 32?

3 Answers
May 21, 2018

Answer:

#11*sqrt(2)-2*sqrt(6)#

Explanation:

#sqrt(98)=sqrt(2*49)=sqrt(2)*7#
#sqrt(24)=sqrt(6*4)=2sqrt(6)#
#sqrt(32)=sqrt(2*16)=4*sqrt(2)#

May 21, 2018

Answer:

#11sqrt(2)-2sqrt(6)#

Explanation:

#sqrt(98) = sqrt(2xx7xx7)=7sqrt(2)#
#sqrt(24) = sqrt(2xx2xx2xx3)=2sqrt(6)#
#sqrt(32) = sqrt(2xx2xx2xx2xx2)=4sqrt(2)#

#7sqrt(2)-2sqrt(6)+4sqrt(2)=11sqrt(2)-2sqrt(6)#

May 21, 2018

Answer:

#11sqrt2-2sqrt6#

Explanation:

#"using the "color(blue)"law of radicals"#

#•color(white)(x)sqrtaxxsqrtbhArrsqrt(ab)#

#"simplifying each radical gives"#

#sqrt98=sqrt(49xx2)=sqrt49xxsqrt2=7sqrt2#

#sqrt24=sqrt(4xx6)=sqrt4xxsqrt6=2sqrt6#

#sqrt32=sqrt(16xx2)=sqrt16xxsqrt2=4sqrt2#

#rArrsqrt98-sqrt24+sqrt32#

#=color(blue)(7sqrt2)-2sqrt6color(blue)(+4sqrt2)#

#=11sqrt2-2sqrt6#