What is the taylor series expansion for the tangent function (tanx)?
1 Answer
# tan x = x + 1/3x^3 +2/15x^5 + ...#
Explanation:
The Maclaurin series is given by
# f(x) = f(0) + (f'(0))/(1!)x + (f''(0))/(2!)x^2 + (f'''(0))/(3!)x^3 + ... (f^((n))(0))/(n!)x^n + ...#
We start with the function
# f^((0))(x) = f(x) = tanx #
Then, we compute the first few derivatives:
# \ \ \ \ \ \ \ \ \ \ \ \ = sec^2(x) #
# f^((2))(x) = (2 sec^2x)(secx tanx)() #
# \ \ \ \ \ \ \ \ \ \ \ \ = 2 sec^2x tanx #
# \ \ \ \ \ \ \ \ \ \ \ \ = 2 (1+tan^2x) tanx #
# \ \ \ \ \ \ \ \ \ \ \ \ = 2 (tanx+tan^3x) #
# f^((3))(x) = 2{sec^2x+3tan^2x sec^2x} #
# \ \ \ \ \ \ \ \ \ \ \ \ = 2sec^2x{1+3tan^2x} #
# \ \ \ \ \ \ \ \ \ \ \ \ = 2sec^2x{1+3(sec^2x-1)} #
# \ \ \ \ \ \ \ \ \ \ \ \ = 2sec^2x{1+3sec^2x-3} #
# \ \ \ \ \ \ \ \ \ \ \ \ = 6sec^4x-4sec^2x #
# vdots #
Now we have the derivatives, we can compute their values when
# f^((0))(x) = 0 #
# f^((1))(x) = 1 #
# f^((2))(x) = 0 #
# f^((3))(x) = 2 #
# vdots #
Which permits us to form the Maclaurin serie:
# f(x) = (0) + (1)/(1)x + (0)/(2)x^2 + (2)/(6)x^3 + ... (f^((n))(0))/(n!)x^n + ...#
# \ \ \ \ \ \ \ = x + 1/3x^3 + 2/15^5x^5 + ... #