What is the the vertex of #y = -12x^2+6x-18 #?
1 Answer
Sep 30, 2017
Explanation:
#"the equation of a parabola in "color(blue)"vertex form"# is.
#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
#"where "(h,k)" are the coordinates of the vertex and a is"#
#"a multiplier"#
#"to express "y=-12x^2+6x-18" in this form"#
#"we can use the method of "color(blue)"completing the square"#
#• " ensure the coefficient of "x^2" term is 1"#
#• " add/subtract "(1/2"coefficient of x-term")^2#
#rArry=-12x^2+6x-18#
#color(white)(rArry)=-12(x^2-1/2x+3/2)#
#color(white)(rArry)=-12(x^2+2(-1/4)xcolor(red)(+1/16)color(red)(-1/16)+3/2)#
#color(white)(rArry)=-12(x-1/4)^2-69/4larr" in vertex form"#
#"with " h=1/4" and "k=-69/4#
#rArrcolor(magenta)"vertex "=(1/4,-69/4)#