What is the the vertex of #y = (x-3)(x-4) +4+12x #?

2 Answers
Apr 4, 2018

The coordinates of the vertex are #(-5/2, 39/4)#.

Explanation:

#y=(x-3)(x-4)+4+12x#

Let's put this in standard form first. Expand the first term on the right-hand side using the distributive property (or FOIL if you like).

#y=x^2-7x+12+4+12x#

Now combine like terms.

#y=x^2+5x+16#

Now complete the square by adding and subtracting (5/2)^2 to the right-hand side.

#y=x^2+5x+25/4+16-25/4#

Now factor the first three terms of the right-hand side.

#y=(x+5/2)^2+16-25/4#

Now combine the last two terms.

#y=(x+5/2)^2+39/4#

The equation is now in vertex form

#y=a(x-k)^2+h#

In this form, the coordinates of the vertex are #(k, h)#.

Here, #k=-5/2# and #h=39/4#, so the coordinates of the vertex are #(-5/2, 39/4)#.

Apr 5, 2018

The vertex is #(-5/2,39/4)# or #(-2.5,9.75)#.

Explanation:

Given:

#y=(x-3)(x-4)+4+12x#

First get the equation into standard form.

FOIL #(x-3)(x-4)#.
https://www.ipracticemath.com/learn/algebra/foil-method-of-binomial-multiplication

#y=x^2-7x+12+4+12x#

Collect like terms.

#y=x^2+(-7x+12x)+(12+4)#

Combine like terms.

#color(blue)(y=x^2+5x+16# is a quadratic equation in standard form:

#y=ax^2+bx+c#,

where:

#a=1#, #b=5#, #c=16#

The vertex is the maximum or minimum point of a parabola. The #x# coordinate can be determined by using the formula:

#x=(-b)/(2a)#

#x=(-5)/(2*1)#

#x=-5/2=-2.5#

To find the #y# coordinate, substitute #-5/2# for #x# and solve for #y#.

#y=(-5/2)^2+5(-5/2)+16#

#y=25/4-25/2+16#

Multiply #25/2# and #16# by fractional forms of #1# to convert them to equivalent fractions with the denominator #4#.

#y=25/4-25/2xx2/2+16xx4/4#

#y=25/4-50/4+64/4#

#y=(25-50+64)/4#

#y=39/4=9.75#

The vertex is #(-5/2,39/4)# or #(-2.5,9.75)#.

graph{y=x^2+5x+16 [-13.5, 11.81, 6.47, 19.12]}