What is the value of #cos(2pi+x)# if #sinx=0.3#?

I'm having trouble solving this problem:

Find the value of #cos(2pi+x)# if #sinx=0.3#

2 Answers
Jul 24, 2017

# +- 0.95#

Explanation:

#cos (x + 2pi) = cos x#.
#sin x = 0.3#
#cos^2 x = 1 - sin^2 x = 1 - 0.09 = 0.91#
#cos x = +- sqrt0.91 = +- 0.95#

Note. There are 2 values of cos x, because if sin x = 0.3,
x could either be in Quadrant 1 or Quadrant 3.

Jul 24, 2017

#+-sqrt91/10#

Explanation:

#"expand using "color(blue)"addition formula for cosine"#

#•color(white)(x)cos(A+-B)=cosAcosB∓sinAsinB#

#rArrcos(2pi+x)#

#=cos(2pi)cosx-sin(2pi)sinx#

#=cosx-0=cosx#

#•color(white)(x)cosx=+-sqrt(1-sin^2x)#

#rArrcosx=+-sqrt(1-(3/10)^2)#

#color(white)(rArrcosx)=+-sqrt(91/100)#

#color(white)(rArrcosx)=+-sqrt91/10larrcolor(red)" exact values"#