What is the value of #cos(2pi+x)# if #sinx=0.3#?
I'm having trouble solving this problem:
Find the value of #cos(2pi+x)# if #sinx=0.3#
I'm having trouble solving this problem:
Find the value of
2 Answers
Jul 24, 2017
Explanation:
Note. There are 2 values of cos x, because if sin x = 0.3,
x could either be in Quadrant 1 or Quadrant 3.
Jul 24, 2017
Explanation:
#"expand using "color(blue)"addition formula for cosine"#
#•color(white)(x)cos(A+-B)=cosAcosB∓sinAsinB#
#rArrcos(2pi+x)#
#=cos(2pi)cosx-sin(2pi)sinx#
#=cosx-0=cosx#
#•color(white)(x)cosx=+-sqrt(1-sin^2x)#
#rArrcosx=+-sqrt(1-(3/10)^2)#
#color(white)(rArrcosx)=+-sqrt(91/100)#
#color(white)(rArrcosx)=+-sqrt91/10larrcolor(red)" exact values"#