What is the value of #int_0^(pi/2) int_0^(2acostheta) r sin theta dr d theta#?

2 Answers
Jul 27, 2017

#(2a^2)/3#

Explanation:

Assuming

#I = int_0^(pi/2)(int_0^(2acos theta) r dr)sin theta d theta# we have

#I = int_0^(pi/2) 1/2(2acos theta)^2 sin theta d theta #

#I=2a^2int_0^(pi/2)cos^2 theta sin theta d theta = -2/3a^2 (cos^3theta)_0^(pi/2) = (2a^2)/3#

Jul 27, 2017

# int_0^(pi/2) \ int_0^(2acos theta) \ rsin theta \ dr \ d theta =2/3a^2#

Explanation:

We want to evaluate:

# int_0^(pi/2) \ int_0^(2acos theta) \ rsin theta \ dr \ d theta #

We evaluate double integrals by starting with the inner integral and treating any other variables except the variable of integration as constant.

Here the inner integral (treating #theta# as a constant) is evaluated as follows:

# int_0^(2acos theta) \ rsin theta \ dr = sin theta \ int_0^(2acos theta) \ r \ dr#
# " " = sin theta \ [1/2r^2]_0^(2acos theta) #

# " " = 1/2sin theta \ [r^2]_0^(2acos theta) #

# " " = 1/2sin theta \ ((2acos theta)^2-0) #

# " " = 1/2sin theta \ (4a^2cos^2 theta) #

# " " = 2a^2 \ sin theta \ cos^2 theta #

And so we can now evaluate the double integral as follows:

# int_0^(pi/2) \ int_0^(2acos theta) \ rsin theta \ dr \ d theta = int_0^(pi/2) \ 2a^2 \ sin theta \ cos^2 theta \ d theta #
# " " = -2/3a^2 \ int_0^(pi/2) \ 3cos^2 theta (-sin theta) \ d theta #
# " " = -2/3a^2 \ [cos^3 theta]_0^(pi/2) #

# " " = -2/3a^2 \ (cos^3(pi/2) - cos^3(0))#

# " " = -2/3a^2 \ (0-1)#

# " " = 2/3a^2#