We have #sum_(k=1)^n(2n+1)/(n+k+1)^2 le sum_(k=1)^n(2n+1)/((n+k+1)^2-1)# but
#1/((n+k+1)^2-1) = 1/2(1/(n+k)-1/(n+k+2))# and
#sum_(k=1)^n1/((n+k+1)^2-1) = 1/2(1/(n+1)+1/(n+2)-1/(2n+1)-1/(2n+2))# or more compactly
#sum_(k=1)^n1/((n+k+1)^2-1) =1/4(4n^2+5n)/(2 n^3 + 7 n^2+ 7 n+2)#
now we have
#lim_(n->oo)sum_(k=1)^n(2n+1)/((n+k+1)^2-1)=lim_(n->oo)1/4((2n+1)(4n^2+5n))/(2 n^3 + 7 n^2+ 7 n+2) = 1#
so
#lim_(n->oo)sum_(k=1)^n(2n+1)/(n+k+1)^2 le 1#
or
#lim_(n->oo)sum_(k=0)^n(2n+1)/(n+k+1)^2-lim_(n->oo)(2n+1)/(n+1)^2 le 1# so
#lim_(n->oo)sum_(k=0)^n(2n+1)/(n+k+1)^2 le 1#
Now #int_(xi=0)^(xi=n) (d xi)/(n+xi+1)^2 le lim_(n->oo)sum_(k=0)^n 1/(n+k+1)^2#
but
#int_(xi=0)^(xi=n) (d xi)/(n+xi+1)^2 =1/(n+1)-1/(2n+1)# and
#lim_(n->oo)(2n+1)(1/(n+1)-1/(2n+1))=1#
so
#1 le lim_(n->oo)sum_(k=0)^n(2n+1)/(n+k+1)^2 le 1# and concluding
# lim_(n->oo)sum_(k=0)^n(2n+1)/(n+k+1)^2=1#