What is the vertex form of #y= 2x^2+7x-15#?
1 Answer
Mar 23, 2016
#y=2(x+7/4)^2+169/8#
Explanation:
Given -
#y=2x^2+7x-15#
Find the vertex
#x=(-b)/(2a)= (-7)/(2 xx 2)=-7/4#
#y=2(-7/4)^2+7(-7/4)-15#
#y=2(49/16)-49/4-15#
#y=49/8-49/4-15=169/8#
Quadratic equation in vertex form
#y=a(x-h)^2+k#
Where -
#a# is the co-efficient of#x^2#
#h# is#x # coordinate of the vertex
#k# is the#y# coordinate of the vertex
#y=2(x-(-7/4))^2+169/8#
#y=2(x+7/4)^2+169/8#