What is the vertex form of #y=(2x-9)(3x-1)#?
1 Answer
Sep 9, 2017
#y=6(x-29/24)^2-625/24#
Explanation:
Given -
#y=(2x-9)(3x-1)#
Vertex form of the equation is -
#y=a(x-h)^2+k#
Find the vertex first -
#y=6x^2-27x-2x+9#
#y=6x^2-29x+9#
x coordinate of the vertex
#x=(-(-29))/(2xx6)=29/12#
y-coordinate of the vertex
#y=6(29/12)^2-29(29/12)+9#
#y=6(841/144)-841/12+9#
#y=5046/144-841/12+9#
#y=(5046-10092+1296)/144=-3750/144=-625/24#
Vertex#(29/12, -625/24)#
#a=6# [coefficient of#x^2# ]
#h=29/12# [x coordinae of the vertex]
#k=-625/24#
The vertex form of the parabola equation is -
#y=6(x-29/24)^2+((-625)/24)#
#y=6(x-29/24)^2-625/24#