What is the vertex form of #y=(2x-9)(3x-1)#?

1 Answer
Sep 9, 2017

#y=6(x-29/24)^2-625/24#

Explanation:

Given -

#y=(2x-9)(3x-1)#

Vertex form of the equation is -

#y=a(x-h)^2+k#

Find the vertex first -

#y=6x^2-27x-2x+9#
#y=6x^2-29x+9#

x coordinate of the vertex
#x=(-b)/(2a)#

#x=(-(-29))/(2xx6)=29/12#

y-coordinate of the vertex

#y=6(29/12)^2-29(29/12)+9#
#y=6(841/144)-841/12+9#
#y=5046/144-841/12+9#
#y=(5046-10092+1296)/144=-3750/144=-625/24#
Vertex #(29/12, -625/24)#

#a=6# [coefficient of #x^2#]
#h=29/12# [x coordinae of the vertex]
#k=-625/24#

The vertex form of the parabola equation is -

#y=6(x-29/24)^2+((-625)/24)#
#y=6(x-29/24)^2-625/24#